RECOGNISING ACHIEVEMENT

2641/01 Statistics 1

June 2004

Mark Scheme

1 (i)	Aspect A B C D E Person 1 71 63 84 57 64 Person 2 12 62 20 85 31 Rank 1 2 4 1 5 3 Rank 2 5 2 4 1 3 d -3 2 -3 4 0$\Sigma d^{2}=9+4+9+16+0=38$ Spearman's rank correlation $\text { Coefficient }=1-\frac{6 \times 38}{5 \times 24}=\frac{-9}{10}=-0.9$	B1 M1 M1 A1 4	Correct ranks (or reverse) Attempt to find d (or d^{2}) from ranked or ordered data Correct formula for Spearman used and $\|\mathrm{r}\|<1$ Correct answer -0.9 or $\frac{-9 k}{10 k}$ cao
(ii)	Spearman's rank correlation coefficient shows that the two people have different, opposite views, or no or little agreement when considering aspects of their job	B1	Comment in context, consistent with r_{s} value $\|r\|<1$
$2 \text { (i) }$ (ii)	Number of possible arrangements $=\frac{5!}{2}=60$ Number of arrangements in which the white bricks are at each end $=3$! or Number of arrangements in which both bricks are at either end $=3!\times 2$! Therefore $P($ white bricks are at each end) $=\frac{3!}{60}=\frac{6}{60}=0.1$ or P (both white bricks at either end) $=\frac{3!\times 2!}{60}=0.2$ or P (white at each end or both at either end) $=0.1+0.2=0.3$	M1 A1 2 M1 M1 A1	5 ! or 120 seen (not in ${ }^{5} \mathrm{C}_{3}$) 60, cao 3! Seen for either case their 3! Divided by their (i) 0.1 or 0.2 or $0.3 \frac{k}{10 k}$ or $\frac{k}{5 k}$ or $\frac{3 k}{10 k}$

5 (i)	$x \sim \mathrm{~B}\left(10, \frac{1}{57}\right)$	$\begin{array}{\|l\|} \hline \text { B1) } \\ \text { B1) } \end{array}$	Binomial stated $n=10$ and $p=\frac{1}{57}$ stated clearly
	Independence: whether Andy wins a particular lottery game is independent of whether he has won any other game. Two possible outcomes: for each game Andy either wins or loses.	B1	One valid comment in context
(ii)(a)	$\mathrm{P}(X=2)={ }^{10} \mathrm{C}_{2} \times\left(\frac{1}{57}\right)^{2} \times\left(\frac{56}{57}\right)^{8}$	M1	$\begin{aligned} & \text { Their }{ }^{n} \mathrm{C}_{2} \times p^{2} \times(1-p)^{n-2} \\ & \text { used } \end{aligned}$
	$\begin{aligned} & =0.0120217633 \\ & =0.012 \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$	Wholly correct method a.r.t. 0.012
		3	
(b)	$\mathrm{P}(\mathrm{X}>2)$	M1	1-
	$=1-\mathrm{P}(X=0)-\mathrm{P}(X=1)-\mathrm{P}(X=2)$		$[P(X=0)+P(X=1)+P(X=2)]$ with at least 2 probs attempted
	$=1-[0.83778 \ldots+0.14960 \ldots+$	M1	Wholly correct method
	$\begin{gathered} \quad 0.01202 \ldots] \\ =0.00059074 \ldots \end{gathered}$	A1	a.r.t. 0.0006
	$=0.000591$ (3 sf)	3	
(iii)	$\mathrm{E}(\mathrm{X})=n p=10 \times \frac{1}{57}=\frac{10}{57}$		$=\frac{10 k}{57 k}$ or a.r.t. 0.175
	$=0.175438 \ldots=0.175$ (3 sf)	1	

7 (i)	Possible routes: $\begin{aligned} \mathrm{ABA} \rightarrow \text { prob } & =\frac{2}{3} \times \frac{3}{4} \\ \mathrm{ACA} \rightarrow \text { prob } & =\frac{1}{3} \times \frac{4}{5} \\ \mathrm{P}(\text { back at } \mathrm{A}) & =\frac{1}{2}+\frac{4}{15}=\frac{15}{30}+\frac{8}{30} \\ & =\frac{23}{30} \mathrm{AG} \end{aligned}$	M1 M1 A1	One correct product seen Both correct routes identified (letters, probs, tree diagram) and one correct product. No other routes allowed. Wholly convincing and correct
7 (ii)	$\begin{aligned} \text { Possible routes } & =\text { ABCA or ACBA } \\ \text { So prob } & =\frac{2}{3} \times \frac{1}{4} \times \frac{4}{5}+\frac{1}{3} \times \frac{1}{5} \times \frac{3}{4} \\ & =\frac{2}{15}+\frac{1}{20}=\frac{8}{60}+\frac{3}{60} \end{aligned}$	M1 M1	One correct route identified Both correct routes identified and one correct product
	$=\frac{11}{60} \text { or 0.183.. }=0.183(3 \mathrm{sf})$	M1 A1 4	Wholly correct method (no other routes) $\frac{11 k}{60 k}$ or a.r.t. 0.183
7 (iii)	Possible routes	M1	At least 4 correct routes chosen
	$\mathrm{ACBCB} \rightarrow \frac{1}{3} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{5}$		
	$\begin{aligned} & \text { ACBAB } \rightarrow \frac{1}{3} \times \frac{1}{5} \times \frac{3}{4} \times \frac{2}{3} \\ & \text { ACACB } \rightarrow \frac{1}{3} \times \frac{4}{5} \times \frac{1}{3} \times \frac{1}{5} \end{aligned}$	M1	2 correct routes identified and one correct 4-termed product
	$\begin{aligned} & \mathrm{ABACB} \rightarrow \frac{2}{3} \times \frac{3}{4} \times \frac{1}{3} \times \frac{1}{5} \\ & \mathrm{ABCAB} \rightarrow \frac{2}{3} \times \frac{1}{4} \times \frac{4}{5} \times \frac{2}{3} \end{aligned}$	M1	3 correct products
	$=\frac{1}{300}+\frac{1}{30}+\frac{4}{225}+\frac{1}{30}+\frac{4}{45}=\frac{53}{300}=$	M1	all products correct and added (no other routes)
	0.176666. $=0.177$ (3 s.f.)	A1 5	$\frac{53 k}{300 k}$ or a.r.t. 0.177
7 (iii)	ALITER: (i) $\times \frac{1}{3} \times \frac{1}{5}+$ (ii) $\times \frac{2}{3}+\frac{1}{3} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{5}$		

